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I. Introduction

Mixed finite element methods are finite element approximations based
on stationary variational principles as contrasted with those based on
extremal principles which yield strict maxima or minima. Remarkable
progress has been made in the finite element theory for elliptic boundary
value problems, especially for those methods which are based on extremal
principles. However, there still exists a gap in the theory as it con-
cerns mixed methods. In particular, error estimates presently available
in the literature often predict rates of convergence well below those
observed in computations. The purpose of this paper is to develop a
sharp theory for mixed finite element methods in the context of approxi-
mate solutions to the Poisson equation.

The fact that a particular variational principle is stationary in
nature has serious implications for finite element approximations. For
example, it is well known that finite element approximations based on the
Dirichlet Principle will be, in a suitable sense, unconditionally stable
and their convergence depends only on the ability to approximate in the
finite element spaces [7]. These are not true for methods based on
stationary principles. For instance, for the Galerkin method based on
the Kelvin Principle considered in this work, we shall find that to obtain
stability and convergence certain conditions must be satisfied which
restrict the type of grids that can be used. The theory of the present
work contains both necessary and sufficient conditions for the stability
and convergence of mixed finite element methods derived from the Kelvin
Principle.

We begin by stating the boundary value problem to be considered and
some equivalent variational formulations. Let {2 be a bounded region in

(*)

" whose boundary T consists of two parts, FD and PN’ Given

(*) The space H'(Q) denotes the Sobolev space of order r, ”'"r
denotes the norm on this space [1], [4].



0
fO e H ()

we seek a real valued function ¢0 satisfying

(1) A¢0 = f0 in §
(2) ¢0 =0 on PD
(3) Véy+v=10 on I‘N s

. n
where Vv is the outer normal to T. Alternatively, find ¢0 and the R

valued function Yy satisfying

(4) div(uy) = £, in &
(5) V¢O—EO =0 in &
(6) ¢p =0 om Iy
(7) 4y * v =0 on Tp.

The classical Dirichlet Principle uses the spaces
(8) s=wt@ , Sy={veS:y=0onT},

and asserts that the solution ¢0 of (1)-(3) minimizes

(9 [ 12 Wew + £0)
Q
over Y € SO' Observe that if

(10) = VS

Yo = %o

this is equivalent to minimizing




f {3 vov + £ Y}
Q - 0
over (Y,v) € SO X I_/O subject to the constraint
v=Vy.

The Kelvin Principle is in some sense dual to the Dirichlet Principle

with div being the dual of V. In this setting we let

(11) V= El(Q) s = {ve V: vev=0 on I"N} s

A

and the Kelvin Principle asserts that u, minimizes

Y
[ vy
Q
over V € ZO -subject to
div(v) = £

The scalar ¢0 enters into the Kelvin Principle as a Lagrange multiplier,

i.e., an equivalent statement of the Kelvin Principle is the following.

Let
(12) Sg = div(Vy) ,
then find
(6g:89) € 3o % Yy
satisfying
(13) fg{goax + dodiv(y) + pdiv(uy)} = IQ £q¥

for all (Y,v) € SO b !0



In the fluid dynamic context [6] the Dirichlet Principle asserts that
among all irrotational fields the one that minimizes the kinetic energy is
the incompressible field. Dually, the Kelvin Principle asserts that among
all incompressible fields, the field that minimizes the kinetic energy is
irrotational.

One uses the Dirichlet Principle in computations as follows. Let for

example
shc s

denote the space of continuous piecewise linear functions on some triangula-

tion of © and let

h _ ;. h h. h_
so-{w es.w-OOnrD}.

Compute the minimum of (9) as Y ranges over Sg instead of all of SO.

1f ¢h is the point where the minimum is achieved and if u = V¢h, then

it is well known that

2
(14) | og-¢ I < Cn%|[ &g ||
0 "h 0o = 0 2
(15) H_qo-l_lhllo < Chllgolll

(see [1], [7D).
The Kelvin principle is in some sense a dual to the Dirichlet princi-
ple with the greatest stress being placed on the vector s i.e., in this

method the 4 is represented in terms of piecewise linear functions and

presumably errors of the form

(16) |




A

(17) Il ¢,-0. || ch || ¢
0™ Il I 0”1,

are obtained.

More precisely, we compute {¢h*2h} by letting

(18) ey

oo . . n . .
denote the finite dimensional space of R valued continuous piecewise

linear functions, and lefting

(19) Zg = {yﬁe !P: v *v=0 on TN}
and
h_ .. .h
(20) SO = dlv(zo).
The pair
h h
(21) {¢h,u } e Sy * Yy

is determined by requiring that (13) hold for all {y,v} € Sg X !g
with (21) replacing {¢O,u }.

Unfortunately, (16)~(17) are_in general not true without further
conditions onthe subspace gg. In subsequent sections we shali give
necessary and sufficient conditions for results of the type (16)~(17)
to be valid.

revious work on this problem [2], [3], [5], [8] is based on the Babuska-

Brezzi condition, i.e.,

s fﬂdiv Xpwh h _oh
(22) N . > e>0  for all €Sy .
v ey l|1h|10+ I div v, | .



This type of condition leads to an error estimate of the form

A

(23) I ugmuy I Ch | 11_0”2

(24) I og-0,ll = chll gyl
0 "h 0o = =0 9

for piecewise linear elements. This is clearly unsatisfactory since it
implies there is no advantage in using the Kelvin Principle except, perhaps, for
the fact that the Dirichlet boundary conditions are natural in this context.

Our theory indicates that for a certain class of grids the optimal

accuracy (16) is achieved. These grids satisfy the Grid Decomposition Pro-
perty defined in the next section. The latter is necessary and sufficient
for stability and optimal accuracy. Incidentally, there is a dual of this
property for the Dirichlet principle, but it reduces to a requirement that

the space Sh contains the constant function wh = 1. This property

is possessed by all known finite element spaces.

These results have been generalized [9] to include other physical
situation described by equations related to the Navier-Stokes or Maxwell
equations.

II. The Discrete Kelvin Principle

To formulate the discrete approximation we let

— = s veve
(1) V=5 , _l{O— {v € V: v*v=0 on I'N}.

The next step is to let

<
o2

N

I<

(2)

be a finite dimensional space and
h

(3) !O = {v

Then letting




h . h
(4) SO = div !O

the discrete Kelvin Principle requires us to compute

(5) {¢5n,} € Spx VP
satisfying
(6) {2{EHIJI+ ¢hdiv(gb) + whdiv(gh)} = {2whf0
for all
{wh,zh} € Sg x _l{g
Once a basis for Sg x zg has been chosen, (6) reduces to a systeﬁ of

N algebraic equtions, where N is the dimension of this space.

We shall assume that .!3 and Sg satisfy the following property:

Approximation property. There 45 an {infeger k > 1 and a consitant

0 < C, <= (independent of h) such that gfor each v €V, there 45 a
A eﬁg satis fying
7 lv=e, < c,u | vl

( T = ta Tl ’

0

and fon each ¥ € Sy there is a lﬁh € Sg satisfying
~ k-
(8) n lP-IPh”o ; CAh 1 ” w”k-l *

In addition we assume that (7)-(8) hold if k 4is neplaced by k' {don

any 0 < k' < k.

This property is valid for spaces of piecewise polynomial functions of
degree k-1. For example, k = 2 with linear elements. The error estimate

(7) is standard (see [1], [7]). The space Sg in this case is contained in

-7




the space of all piecewise constant functions. It may be strictly contained
in the latter but there are always enough functions in Sg to achieve (8)
for any Y € SO' This is discussed in Section 5.

We are now prepared to introduce the Grid Decomposition Property. To

motivate it let us recall that any v 620 can be decomposed as

(9 v=VEf +z
where
(10) div(z) = 0
and

9]

Indeed, we construct & by solving

(12) Ag = div(v) 1in »Q
(13) £E=0 on FD

(14) VE+v=0 onl"N .
and then determine 2z by

(15) z=y-V§
Observe that if

(16) w=Vg

then from the theory of parti'al differential equations [4]

(17) lwlly = ¢ llav ;.




The Grid Decomposition Propesrty requires that this hold on !8. More pre-

cisely, we have the following.

Definition 1. gg satisgies the GDP with constant

(18) O<CG<co

A6 and only if fon each

h
(19 Hely
therne exist N
(20) e 2 € Yy
Aatis fying
(20 Y ¥yt 2,
with
(22)  div(z,) =0, [wez =0, fw | 2 c; [ divyl
2 o h %h 'l G )

Observe that GDP is related to the way div is represented in the
discrete problem. Indeed, it states that if div(gh) is small for any

v, € yg, then the projection of gh -onto the orthogonal complement of

B aiv(z™=0 in @}

(23) N (div) = (2" € Vi

is also small, i.e. 2, inv(21) is truly the divergence free part of

h

v In the next section we shall show that GDP is sufgicient for optimal

—h"*

accuracy. Here we shall show that it is necessary and sufficient for sta-

bility.



Definition 2. The discrete Kefvin probLem {s stable with constant

0<C< o

if and only L4 the ﬁoﬂﬁow&ng hqﬁdél_r§e;

h
(24) £ €3,

., h h Vh . .
be given and Let v, minimize | v ”0 for atl v eV, satisgying
(25) div gp = £ .

Then
26 v < ¢ | £ |
o o 5 elig I

Theorem 1. The GDP holds with constant Cp 46 and only if the dis-

crete Kelvin problem Ls stable with constant Ce

Proof. Let Nh(div)i- be the orthogonal complement of Nh(div)- Thus

(27) gg = N (vl @ N, (aiv)

First suppose GDP holds, i.e., any v. € Vh can be written

— o ——— h —0 —
(28) AALS ALY A
where
(29)  z, € N (div), fﬂgh.ih = 0, I Eh”o 2 ¢ Il aiv Xh"-l
Moreover, let vy e_yg satisfy
(30) llghlh)= min. subject to v, e_zg and div(y,) = £,

-10-




where fh € Sg = div(yg) is given. We want to show that
(31) lo Il = co £l
—h 0o = G h -1

To do this we write Vv

n 3s in (28)-(29). The claim is that z_ =0 and

~h

SO

»

Izl = el < ¢ lavw I = cf lI£ 1l -
h 0 —h 0 G —h -1 G h -1
To see this observe that for any real number &, Yy + 5£h is in Zg
and
(32) div(zh-+6gh) = div(zh) = fh .
Thus as A2 minimizes H .”0 over ZE we have
(33) fQ (v, 82, )+ (v, +6z,) 2 IQ Vptvy s
i.e.,
2
(34) 28 [ zewy 2 =87 [z .
2 f

Since ¢ 1is arbitrary we necessarily have
(35) {25h°zh = 0.

But v, =w_+ and w, 1is orthogonal to z,. This means

36) [orzy = [ )z, = 0
£

Conversely, assume that the Kelvin problem is stable (with constant

C,) and let v, € EE be given. By (27), we can always write

-11~



(37) v, = w, +

where
(38) w, € Nh(div)lg 2, € ﬂh(div)
We want to select w such that
w C div v
lay 1| < og ey I

To do this we solve a Kelvin problem. More precisely, let

fh = div(zh) s
and let w, minimize Il v, || subject to
=h —h 0
\ Vh div(w,) = £
~h € 2o ~h h°
By (31) (3% is playing the role of v, in this inequality)
fw, I 2 g Il £l
=h 0 G ' h _1
and also
2y = Y T ¥, € N(div)

Therefore the result is proved.

In one spatial dimension (n=1) all finite element spaces satisfy

GDP, the proof being exactly the same as for the space ZO’ i.e.,
(9)-(15). 1In two dimensions, however, this is no longer true. For

example if linear elements in triangles are used, the GDP is valid for the

criss-cross grid in Figure la but fails for the directional grids in Figure
1b and lc. The GDP also fails for bilinear elements in the rectangles of
Figure 1d. That the GDP is valid for the criss-cross grid is established

in section 5.
-12-




I11I1. Error Estimates

The major theorem of this paper is the following:

Theorem 2. Let GDP hofd with constant C., and the approximation

G’
p&ope&ty [{7)-(8) Aect&on 2] hotd. Then zhene 4A a conbtant C depending

‘ onﬂy on 7CA and Cq Auch that

and
Fogmon | < e Hcllog || +n ugll).
0 h 0 0 k=1 -0 K
The key identity that will be used repeatedly is
h . h h..
| {EO.X-+¢Od1v(! )+ le(EO)} = | {Eh ¢ le(V )+ dlv(gh)}

f £

This is valid for all {wh,zb} € Sg X gg (since both sides are equal to

LQfodﬁ by [(13), section 1] and [(6), section 2]).

Lemma 1. For all gfle_gg
(2) | div(uy-u,) ”o < div(go—zh) II0
In paﬂiiauZa&,
3 | O I O L

where 5%1 48 the gunction 4in [(7), section 2].
Proof. Let gp =0 in (1). Then

@) [ aiv(ugu "t
Q2

-13-



for all wh € st - div(zh). Let wh = diV(Ehﬁyh). Then (4) gives (2).

Lemma 2.
(5) I divCup-upd |l < ¢, bl diviug-up) ||
-1 0
Proof. Solve
-AE + & = div(goﬁgh) in Q
E=0 on T
Then
(6) ‘ hell; < I divCugu) |l v
But
7 e 12 = [ (ve-ve + £} = [ € div(agu).
f Q

We note that if XF =0 in (1)

h.. _ h . oh
(8) {2W d1v(2015h)-—0 for all y € SO.

Thus letting wh = Eh

(9 le T = [ eEhavg)

A

< e-E I dveugmu) ).
, el

Using the approximation property [(8), section 2] with k = 1 we can choose

h
I3 such that

-14-




flA

(10) le-E"1 < c,n Je]
0 1

Thus (5) follows from (6), (9), and (10).

Observe that div(u,-u ) is optimal in | - ”—l , i.e.
(11D “ div(gofgh)“_l < CAt1H div(goﬁgh)ﬂo (Lemma 2)
< CA11” div(go-ﬁh)”o (Lemma 1)

[N

RIFN

uw . ([7], Section 2)

[N
e
3

So far GDP has not been used, however from this point on it will play

a crucial role. In particular, write

12) LA
where
(13) div(z,) = 0, fgyh'gh =0, |lw ||0 < Co Il diviu ) ll_1 .

Note that for all Vv E v

lawy || < vl
-1 0
Indeed
J (aiv vy -[ vewp
ldivy || = sup @ — _ sup  _ O
1
verg@ v ll,  vemg@ I[vl,
lvlly I vy
< e tho 1701, < il -
vers@ v | -
Thus

Pyl < oot atvaeggl  + | avizg -}

-15-



and so

7(14) H EhHO < CG{H Eo_ﬁh!lo + ” div(E.o_Eh) “_1}'
Thus it is sufficient to obtain a similar bound for 2y In particular,
letting wh =0 and EP =z in (1) we obtain
(15) [z, = [ vz,

§ §
and so
(16) fzgzy = [ ez, = [ @bz,
This gives
a7 Fzpll = lup-gpll s

h 0 —0 —h 0

then (11), (12), (14) and (17) give
(18) | o-gll < on® [ uyl)
—h —h 0o = —0~k

and from the triangle inequality we obtain the first part of Theorem 2,

k
| u-uoll = ch flull -
n 2ol Zoll
To estimate ¢0-¢h we let wh =0 in (1) to get

(19) i {¢hdiv‘yh} / {¢o div XP + XP'

2 £

(go-gh) }.

Let $h € Sg. Then=

{2{(¢0-$h)div(yﬁ)+,X?'(go-u )1,

(20) [ 109,~8,)div v}
Q

Now let ¢h be the function in [(8), section 2] with ¢ = ¢O.

. h .. .. . h
Since SO = dlv(go) there is a v, €-£O such that
(21) ¢h - ¢h = div(zh).

-16-




We now use GDP to write

(22) R N TR
with
(23) div(z,) = 0, fgﬂh'ih =0, | Ehllo < cg Il o8y II_l :
Letting Xh =%  in (20) we obtain
(26) [ logbal < I ogdy Il Iog-d 0l + lwgll [l g, |

Q 0 0 0 0

< Weoby I 0 oydyll 4 Gl ¢h-$hnol|go—ghn0,

Thus
(25) e, -8, Ilo < Mogdy I+ coll wgmll

The second part of Theorem 2 now follows from an application of the triangle

inequality. Thus Theorem 2 is proved.

With linear elements on the criss—-cross grid, Theorem72 assergg_?hat _
the L, error in v{gé-:ghi is of b(hz). This shaﬁ?ens the 0<P2,ﬁ¢§?i§§tgw,u_,ﬂ
found in [2] and [5]. The L2 error in (¢0-¢h) is 0(h), the same as pre-
dicted in [2] and [5]. However, if in (20) we choose $h to be the best L2

approximations in Sg to ¢0, then, since div(g?) € Sg, the first term on the

right hand side of (20) vanishes. We are then led to the conclusion that
(26) i 0, ll, = 0

h "h"0 ?
i.e. the mean value of ¢b over a given triangle is actually approximated to

O(hz). This phenomena is illustrated in the numerical examples of section 4.

-17-



IV. Numerical Results

In this section we briefly report the results of computations based
on the Kelvin principle. These results give evidence of the essential
role played by the GDP. The examples of this section deal with the
Poisson equation [(1), section 1]. An equivalent first order system is
given by [(4) - (5), section 1].

We first consider results for the mixed data problem depicted in
Figure 2a using the directional grid iliustrated in Figure 1lb. The

particular problem considered has an exact solution given by
&) ¢ = sin(mx/2)cos(my) .

Figure 3 displays the L2 error of the approximate solution for ¢
and the components u and v of u = grad ¢. The figure indicates
that the L2 errors in u and v remains roughly constant and the
L2 error in ¢ grows linearly as the size of the grid is reduced.
We recall from section 2 that the GDP is necessary and sufficient for the
stability of the Kelvin approximation. The results shown in Figure 3
indicate that for the directional grid the "constant" CG appearing
in the definition of the GDP in fact grows like h_z, where h 1is a
measure of the grid size. As a result, all accuracy in the approxima-
tion to u is lost, and the approximation in ¢ actually becomes
unbounded. These results, and those below concerning the criss-cross
grid give evidence of the importance of the GDP.

The directional grid used to generate the results of Figure 3 does

not satisfy the GDP. However, Lemma 1 of section 3 is independent of

this property of the grid. In the context of the directiomnal grid, that

-18-




lemma shows that the divergence of the error in the approximation to u
should be O0(h). This result is confirmed in Figure 3 where that divergence
is graphed as a function of h. As is evident from the figure, the
divergence of the error in u 1is indeed O0(h) even though the error in

u itself is 0(1).

We now consider results using the "criss-cross" grid illustrated in
Figure la. Figure 4 displays the L2 errors of the approximate solutions
for u and v. Results are given for the mixed data problem with exact
solution given by (1) and for a Dirichlet problem (see Figure 2b) with

exact solution
¢ = sin (mx)sin(my) .

The mixed data and Dirichlet problems were approximated using an evenly

spaced grid. In addition, computations for the mixed data problem were

carried out using a variable grid whose spacing is determined by choosing

an even spacing in a (&,n) coordinate system, and then letting
x =& and v=n .

This stretching has the effect of accumulating grid points near x = 0
and y = 0. For all cases, the computed rate of convergence, using
criss-cross grids, is of second order. The results shown in Figure 4,
especially when compared with those of Figure 3 for the directional grid,
are lucid evidence of the necessity of the GDP to the achievement of
optimal orders of accuracy.

Also shown in Figure 4 are the values of || ¢h_$h ”0 for the

problems described above, confirming the result (26) of section 3.

~19-



V. Proof that the Criss-Cross Grid Satisfies the GDP

For simplicity consider the Dirichlet problem for the uniform grid
shown in Figure la with !3 = !ﬁ being the space of Rz - valued piece-
wise linear functions. No assumptions on § will be required. To
verify that this grid satisfies the GDP we must show that there is a
positive number

(1) O<CG<oo

independent of h for which the following holds. Given any

(2) £oe " = asv(y™
there is a v, in !b for which

(3) | div(gh) = fh
and

(4) Il v

Since ZP consists of piecewise linear functions on the grid in
Figure la, observe that (2) implies that each fh in Sh is a piece-
wise constant function. What is interesting is thaf Sh is a stnict
subspace of the space §h of all piecewise constant functions on the
criss-cross grid in Figure la. Indeed, the following gives a rule for

A

determining when a function f, in Sh is actually in Sh.

-20~




Lemma 3: Let £ be in S'. Then £ 4is in S 4if and only if

forn any nectangle R (see Figure 5)
(5) f.+ £, =£f +£,

where fj 45 the value of £ 4n Tj'

Proof. We must construct continuous piecewise linear functions

u,v such that

(6) 3% T By f s

in each triangle. To do this we close the system with

du , v

7 9y 9%

where the piecewise constant function g is to be determined.
Observe that (6) - (7) is hyperbolic, and we shall solve it by the

method of characteristics. The characteristic coordinates are

(8) E=x-y , n=x+y ,
and letting
(9 20 = (u-v) , 2V = (u+v) ,

-21-



we obtain

(10) £-f-8 , Fo=f+g

Let the arbitrary rectangle R in Figure 5 be given. We first con-
struct U,V,g in R. Following this we show that they can be globally
extended such that {u,v} defined by (9) is in yﬁ, i.e., it is continuous
in @ as well as linear in each triangle.

Since f and g are constants in each triangle Tj (3=1,...,4), then

any function U satisfing the first equation in (10) will be continuous in

R if and only if
(1) f

where fj’ gj are the values of f,g in the triangle Tj’ Similarly,

continuity of V requires
| (12) fo+g,=1£,+g, 5 £, + g =%, + 8y
It follows immediately from (11) - (12) that (5) is a necessary condition

for (11) - (12) to have a solution g;; moreover, it is also sufficient.

Indeed, let

(13) g, = arbitrary ,
then
1) g -g = f - f  gp-g=f-fy ey TE-f

is a solution provided (5) holds.

=22~



To define U,V globally we first of all define the piecewise constant
function g in each rectangle so that (11) - (12) holds. To comstruct U
and V we simply integrate (10) along the characteristics working from
rectangle to rectangle. 1In particular, consider Figure 6 where for simplicity
the region { is shown as a rectangle. Along the left and top sides U can
be taken as an arbitrary linear function. To determine its values in a given
rectangle R we simply integrate (10) from points A to B as shown in
Figure 6. The conditions (11) - (12) insure U is a continuous function
in R, and using the value of U so obtained at B to start the integration
in the next box, interelement continuity is assured.

Since f and g are constants in each triangle, U and V will be
linear functions of £,n in each triangle. Hence u and v defined by
(9) will be continuous piecewise linear functions (i.e., {u,v} in EP).

Note that since the dimension dim(§h) of §h is equal to the number

m of triangles in the grid, it follows from (5) that
dim Sh = 3m/4.

Moreover, a locally defined basis can be constructed as follows. For each
rectangle R (see Figure 5) we associate three functions wl’wz’wB which
vanish outside R. The piecewise constant function wi is uniquely determined
in R by the requirement that it is identically 1 in Ti L,Ti+1 and zero

in the other two triangles in R. As R varies over all rectangies this
process defines 3m/4 independent functions in Sh and hence the set of

such functions is a basis for Sh. Interestingly, this shows that Sh is

the linear hull of the union of the piecewise constant spaces associated

with the directional grids shown in Figures 1b and lc. Therefore the approxi-

mation property [(8), section 2] is certainly valid for the above choice of Sh

23~




We now return to the proof of (4), which is contained in the following

result.

Lemma 4. There 45 a number 0 < Cg < @ Andependent of h such
h

that forn each fh in S8 we have
(15) fh = div[xh]s
where v, in VP satisgies
(16) Izl < cell 0l -
Proof. To simplify notation we drop all subscripts involving h

since all functions that will be encountered will be in Sh or Vh{ As in

Lemma 3 we work in the rotated coordinates (E,n) defined by (8). In addi-
tion we order the vertices in a sequential manner starting at the bottom of
the region and moving left to right as in Figure 7. Observe that the center
of each (rotated) rectangle has an index (a,B), where o+ B is an integer,
while Y+ 643 is integral for the indices (Y,8) of the corner points. We

>B

denote the rectangle whose centroid has index (o,B) by R and let

a,B

Ty

(k=1,2,3,4) denote the four enclosed triangles.
Given f in Sh we must construct continuous piecewise linear func-

tions u and v such that

(17) f = div (v) = SE-+ B

a,B _a,B .
We let u s V denote the values of u,v at the vertices, and let
fz’e denote the value of f in the triangle Tz’B. Then a direct calcu-

lation gives

(18) f‘;"B = ’{u + D;v,
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where

£ OTEB _ a8 +  WBHE _ 0,8
(19) Dlu = - , DZV = -
Similarly,
f?’s = Diu + D;v
(20) £2°F = phu + v
fi’s = DIu + D;V,

where the difference operators D;, D; are defined by

0«98 _ ua‘%‘,B - vaaB - Va’B—%

- _u
(21) Dlu = o s D.v 5 .

N

Observe that (18) and (20) can be combined into

ua"‘%,B _ uu_%,B Va’8+% OC,B-%

-V - asB a;B — OL,B a’B
(22) 7 + o -é(f1 +f3 )—%(f2 +f, )

a relation which reconfirms the necessity of the condition (5). We rewrite

(22) as
(23) atv, (B = F,

where divh denotes the difference operator on the left hand side and

aak

denotes the average of f on the right.
Observe that (22) (or (23)) involves values of u and v only at the

corner points of the rectangles (i.e., vertices (y,8) where v+8+3% is

integral). Once these have been determined the values at the centroids of
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the rectangles (i.e., vertices (a,B) where o+ 8 1is integral) are then

given by
(24) ua,B = %(ua+%,84_ua—%38) + %{f%’s— fg’B),
(25) B o g B By BB (06

That is, (23) - (25) are three independent relations among the four depen-
dent equations (18), (20).
To solve (23) we introduce a discrete potential © satisfying

o+h, B ea+1,8 _ eu,B vg’8+% ) ea,8+1 _ ea,B

(26) u = 7h ’ 7h

Then (23) is equivalent to

2

(27) <—l—)([e°‘+l’3-2e“’8 + eo"l’s] + [e“’8+1—2e°"5+ e“,B-l]) N
4h

Observe that this equation has a ''red-black' decoupling. Indeed, only
values of 6 at the centroids of rectangles (i.e., vertices (0,B) where
o+ B is integral) are involved. Moreover, there are two types of such

B

points. The first are '"red" rectangles R*’® where o and B are both
integers (o=1i, B=3j). The second are "black" rectangles where o = i+3,
B = 3j+4%.

Since all boundary conditions are natural we can extend the grid to

cover § and let e“’B =0

outside . Then (27) becomes a standard five
point star on the red rectangular grid, and a standard five point star on
the black rectangular grid. Moreover, defining u,v by (26) we get the

standard estimate
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2
cli£llZ, .

A

2 2
(28) 2> {[u"“%’f‘! + |y B }
a,B

for some absolute constant 0 < C < «, In addition, defining u,v at

the centroids of rectangles by (24) - (25), we get
2 o,B 2 a,B 2 2 2 2
(29) SOIR LR L< cdiel? + 121>,
a,B

where the sum is over all vertices (a,B). Letting u,v be the continuous

piecewise linear functions whose values at the vertex (o,B) is ua’B,
va’B, we get

2 2 2 2 2
(30) a2 + 1IvI2 < cdiel? +n2 J£)2).

Finally for the uniform grid being considered we have the inverse in-

equality for function f € Sh [3]

(31) el < emlizls
0
hence (15) - (16) hold with
u
v = O.
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Figure 1:

(b) (c)

Grids.

a) Criss-cross triangles
b-c) Directional triangles

d) Bilinear quadrilaterals
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Figure 2.- Boundary value specifications used in
numerical examples. (a) Mixed data;
(b) Dirichlet data.
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Figure 3.- L2 error in the Kelvin approximation to ¢,
u= 0¢/8x, v = 0¢/3y, and div(y,v) = 9u/3x + 3v/dy
using the directional grid for the mixed data problem.
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Figure 4.- Ly error in the Kelvin approximation to u = écp/ax-
and v= 9¢/dy and the Ly norm of the difference
in the Kelvin approximation to ¢ and the best L2
approximation to ¢, using criss-cross grid.

(a,d,f) displays u; (b,d,h) displays v; (c,e,g)
displays ¢. (a,b,c) for the mixed data problem
using a variable grid; (d,e) for the Dirichlet
data problem using a regular grid; (f,g,h) for the
mixed data problem on a regular grid.

-32-




Figui'e 5.- Generic rectangle R.
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Figure 7. Ordering of vertices and triangles

for Lemma 4.
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